Showing posts with label electricians clarkston. Show all posts
Showing posts with label electricians clarkston. Show all posts

Sunday 3 January 2016

WES Electrical Southside Glasgow


From 1st December 2015, private landlords are responsible for ensuring that an electrical safety inspection of their property is carried out by a registered electrician at least every five years.

The new legislation explained

As of 1st December 2015, under sections 13(4A) and 19B(4) of the Housing (Scotland) Act 2006, private landlords in Scotland will be required by law to ensure that their properties are electrically safe.
This covers:
  • Any installations in the property for the supply of electricity
  • Electrical fixtures and fittings
  • Any appliances provided by the landlord under the tenancy.
Landlords must be able to prove that all of the above are in a reasonable state of repair and in proper working order.

So what do landlords need to do?

Landlords are required to ensure that regular electrical safety inspections are carried out by a competent person, and that anything that fails to pass the inspection is replaced or repaired immediately.
As a minimum, an electrical safety inspection must be carried out:
  • Before a tenancy starts, and
  • During the tenancy, at intervals of no more than five years from the date of the previous inspection.
A copy of the most recent electrical safety inspection reports must be provided to both new and retained tenants.
The person who conducts the checks must be employed by a firm that is a member of an accredited registration scheme operated by a body recognised by the Scottish Government – this will usually mean that they are registered with NICEIC or a member firm of the Electrical Contractors’ Association of Scotland (SELECT).
Both the NICEIC and the Electrical Contractors' Association of Scotland (SELECT) provide online tools for finding local members.

Transitional Rules

the Scottish government guidelines details the transitional rules for the scheme.
  • It requires any new tenant to receive an EICR if they take up their tenancy after the 1st December 2015.
  • Any existing tenant to receive a copy of an EICR before the 1st December 2016 (unless their tenancy will end before that date).
  • If an EICR (or new installation certificate) is available for the property that was produced since 1st January 2012, this is still in its perceived 5 year lifecycle this is still valid (for 5 years from issue).  These do not need any PAT report.
  • Any EICR produced after 1st December 2015 will also need Appliance test reports.

What happens during the electrical safety inspection?

An electrical safety inspection has two parts:
  • An Electrical Installation Condition Report (EICR) – formerly known as a Periodic Inspection Report (PIR) – on the safety of the electrical installations, fixtures and fittings.
  • A Portable Appliance Test (PAT) on any portable appliances that you have provided by the landlord.
For the Electrical Installation Condition Report, the registered electrician will carry out checks of installations for the supply of electricity, electrical fittings (including but not limited to switches, sockets and light fittings) and fixed electrical equipment (including but not limited to boilers, panel and storage heaters and hard-wired smoke and fire detectors).
As a result, the electrician will produce an EICR document that highlights any problems using different classifications: code C1 indicating ‘danger present’, code C2 indicating ‘potentially dangerous’ and code FI indicating ‘further investigation required’. Any remedial work that is undertaken as a result of the inspection will then be recorded on a Minor Electrical Installation Works Certificate.

Thursday 12 February 2015

Consumer Unit Replacements East renfrewshire

Changing a consumer unit


Follow us on Facebook

This article discusses the reasons why you may need to change or upgrade a Consumer Unit (CU) aka "Fuse Box", and covers the procedures to follow. 

Contact WES ELECTRICAL 0141 840 5236


General Guidance

Note that this represent major electrical work, and should not be attempted unless you are confident that you understand the technicalities involved, and can produce an adequate standard of workmanship. 
You will also need access to specialist test equipment such as an earth loop impedance tester, and insulation resistance tester, a low ohms meter, and a RCD tester (or equivalent multifunction tester). 
You should have access to a copy of the IEE on-site guide and a copy of the IEE Wiring regulations.
Note that most of the work described here would be classed as a "notifiable work" under Part P of the building regulations.

Additional Safety Advice

When carrying out earth fault loop tests, and insulation resistance tests on virgin installations, one should take great care to ensure that no other occupants of the house are put at risk of exposure to high touch voltages should it turn out there is a failure in some part of the protective infrastructure, and that adequate warnings are given before testing.

Reasons for a change

Old switchfuse
There is often an implicit assumption that a modern CU with resettable Miniature CIrcuit Breakers (MCBs) will be "better" than an existing one that has cartridge or re-wireable fuses. It is important to understand that both types of fused circuit protection are still permissible in the current wiring regulations, and can offer the required levels of protection. There are also disadvantages to changing from fuses to MCBs in some cases. 

Reasons to change

  1. You need provision for more circuits
  2. The existing CU is damaged in some way
  3. You need to better integrate (or provide for the first time) RCD protection for circuits.
  4. You have a rewireable fuse CU and there is a risk that uninformed people may attempt to re-wire a fuse with the incorrect rating wire.
  5. You have older PVC T&E power cabling with undersized earth wires and re-wireable fuses. 
  6. You need to separate out circuits to allow independent control - say for time switched electric heating, or for a power feed to an outbuilding.
  7. To rationalize or simplify an existing system which is complex (either just to reclaim space, or to make use of the system less prone to errors).

Potential pitfalls

In many cases a new CU fitted with MCBs will be upgrading an older CU fitted with fuses (either cartridge or re-wireable). There are a number of problems that may manifest as a result:
  1. Nuisance trips. Compared to fuses, modern MCBs react more quickly to very short term overloads, and may result in loss of power to a whole lighting circuit when a bulb blows. 
  2. Discrimination: it can be harder to ensure that the circuit protective device nearest to a fault will be the only one to open when you have cascaded MCBs - sometimes upstream fuses interoperate better with downstream MCBs
  3. Expense: Changing a CU can be expensive, and may not bring significant benefits in overall safety. There may be other more serious problems with an electrical installation that are better addressed first.
  4. Extra work: Fitting a CU with RCD can often result in the installation not working initially due to hitherto unnoticed faults in circuits such as a borrowed neutral or higher than expected earth leakage. While discovering these faults is not a bad thing, it can force the investigation and repair of a number of other issues not directly related to the original task planned, causing unexpected cost and delay. 
Note that steps can be taken to minimise these potential problems, such as using HRC fuses where more appropriate (e.g. feeding submains to outbuilding CUs), or using type C MCBs on lighting circuits etc.

Planning

Location

Consumer units typically need to be within 2m of the electricity meter unless an additional switch fuse is fitted to protect the tails. They should not be mounted on the electricity suppliers meter board (although this is quite often seen). An ideal location should also make access to the CU easy without need to resort to ladders or climbing past obstructions - since you may be doing it in the dark. 

Ways

The spaces into which circuit breakers and other devices may be fitted are called "ways". Generally each device (and hence often each circuit) will take at least one way. When selecting a new CU, it is wise to choose one with enough ways to accommodate all of the proposed circuits, and to leave a few spare ones for future applications. Note also that some devices that can be mounted in a CU such as contactors, time clocks, bell transformers etc, may be wider than a standard single module and hence take more than one "way", and some of these more exotic devices may also require a space to be left beside them to facilitate cooling.

RCDs

Any modern CU will typically feature at least one RCD, and quite probably more in new designs. 

Split Load Vs Multiple

When selecting a CU, one option that is often overlooked is to use more than one CU rather than one big split load one. For example, it may be simpler to position a pair of smaller CUs in a confined space giving adequate free ways. 
In the case of houses with TT Earthing, the normal 16th edition style single CU solution involves a 100mA time delayed RCD in the position of the main switch, with the 30mA RCD in the split load position (the time delay resolving the problem of discrimination between the RCDs under fault conditions). Using two CUs will allow a normal 100mA RCD to be used on one CU dedicated to circuits that do not require direct contact protection, and the other for socket circuits etc. This will save the cost of a time delayed RCD since there is no need to cascade RCDs in this case.

Service Connector Block / Henley block

Multiple CUs can each be fed from their own set of tails. A Service Connector Block (aka "Henley Block") is a large junction box that can be used to split the tails from the meter or main switch enclosure, to allow the feeding of multiple CUs. Note these are available in single pole and double pole. The double pole devices will accommodate splits of both the Line and Neutral tails of a typical domestic supply in a single unit.

External main switch

When more that one CU is fitted, it is often worthwhile fitting an additional single "main switch" so that the capability to kill all power to all circuits with one action is retained.

Selecting Equipment

The immediate choice you will be presented with is the choice of metal clad or "insulated" (i.e. plastic) CUs. On TN [1] systems either can be used. The metal clad ones are better if you need to terminate cables like SWA with glands. The plastic ones are better for smaller installs where the ability to easily cut out only small sections for cable entry is handy. 
With a TT install you will need to use a plastic CU since this minimises the possibility of a phase to earth fault occurring inside the CU before the RCD (and hence never being cleared due to the high earth fault loop impedance of the local earth spike). 
One should also check that the breaking capacity of the selected protective devices is adequate. Typically modern MCBs can break fault currents up to 6kA. This is usually more than adequate. However if you live in a large densely populated city, or very close to a substation then you should use the appropriate test equipment (most earth fault loop testers will have a capability to measure the prospective short circuit current) to measure the maximum prospective short circuit current to ensure it is below the maximum limit that can be safely broken by the selected MCBs. In situations where 6kA is inadequate, the use of HRC cartridge fuses may be more appropriate, or using some of the ranges of consumer unit and circuit breakers with higher breaking capacity designed for industrial or commercial use.
Finally, many CUs will have their main isolator switch on the right hand side, however this is not universal and different brands of CU may favour placing the main switch on the left. Some can be reconfigured to your preference. The position of your electricity meter and the length of the tails may dictate that tails entry on a particular side is required.

Other work

One job that frequently needs doing with a CU replacement is installation or upgrading of the main equipotential bonds between the main earthing point and the metallic services entering the building. 

Starting work

Plan your work schedule carefully. Make sure you have enough time allotted to complete (or at least advance it to a appropriate intermediate stage) in the time / light available. Make sure any cordless tools you need are charged, and that batteries in test equipment are ok. You will also need to ensure you have enough natural light or suitable additional lighting to carry out the work safely. Head mounted LED torches are ideal for this sort of work. Again make sure you have spare batteries. Ensure you have adequate spare cable / wire to hand plus crimps and junctions boxes etc should you need to extend circuit wires. 

Disconnecting the power

Prior to replacement of the CU it is necessary to isolate the power feed to it. Some installations have an isolation switch for this purpose, however many don't and the other most readily available method is to remove the main service fuse. The official way to do this is to seek a temporary disconnection of the supply. More details on the procedure can be found here.
Removal of the electricity distributor's main fuse yourself is not legal, however it is common practice. Unofficially it is reported that many of the supply companies would prefer electricians do this, rather than take the risk of working live. 
Great care must be taken when removing the fuse. It must only ever be pulled when there is no load on any of the circuits (i.e. all existing CU(s) turned off). These fuseholders may be of historic design (possibly dating from the 1940's or earlier), and may lack even fairly basic safety guarding. Touchable metalwork inside the fuse enclosure can be assumed to be live. Please see the additional notes in this article.

Working Live

It is possible to remove the tails and tape the ends over, but this is not recommended, as it does constitute a risk of injury, loss of sight and to life. Live working should not be attempted unless one has the correct equipment and knowledge to allow this to be done safely. 

Labelling

Start by identifying and labelling all the existing cables that enter the current CU before disconnecting the wires. One mistake here can cause a fair bit of trouble later!

Removing the Old CU

Depending on the design of the old CU it may be necessary to remove the fuses or circuit breakers first to be able to disconnect the circuit wires. You will probably need to straighten the wires to allow them to be pulled through the cable entry holes in the old CU. 
Take care if there is any old rubber cable present, since these will have fragile insulation easily damaged. As a general rule rubber wired circuits are not fit for re-use typically due to insulation breakdown, and undersized protective conductors. In some limited cases it may be possible to re-connect a rubber insulated cable, in which case great care will need to be taken to not damage the insulation while disconnecting and removing the wires.

Intermediate tests

Once the old CU is out of the way, this is an ideal time to make checks on the existing circuit wiring. Round trip low ohms tests on ring circuits can now be carried out easily since both ends of the ring are readily available. Insulation resistance tests on individual circuits are also easy to carry out. If you find faults at this stage (like a ring circuit that has a broken loop) you may need to mark this for later attention rather than divert activity away from the main task now. You can always leave one circuit disconnected when reconnecting at the CU later. Some simple tests at this stage can also help identify likely causes of nuisance RCD trip later (like borrowed neutrals or earth / neutral shorts). 
(recording the test results as you go can save some work later)

Installing new CU

Prepare the new CU

First check and setup the CU as you require it. This may mean you need to choose where splits will occur on split load units. Often this will require the cutting of the live busbar to the required number of ways for each section. Even if the CU is apparently already setup correctly you need to make sure that all connections are tightly made and in the right place. 
The New CU does not have to be in the same location as the previous one. Obviously if it is some distance away then the existing circuit wires will need to be extended. Even with a CU in the same location as before it is not uncommon for wire extensions to be required inside the box simply due to different layouts. Inside the CU individual wire extensions may be crimped on. Outside the CU then either junction boxes will be required, or fully insulated cable crimped joints be made.

Fix the Equipment

You may find it easier to fit any service connector blocks and smaller switch enclosures before the main CU is in place. 
Fix the CU in place - if this is going to require masonry fixings take care that you are not going to drill into any buried wires!

Connect the supply

Next the main earth connection plus the supply tails from the meter / switch / service block can be installed. These will need to be done using suitable size tails (typically 16mm² for supplies up to 80A, and 25mm² for 100A supplies). Once the main supply connections are in place you can carry out a visual inspection and a a couple of quick sanity checks with a multimeter to ensure you have got the polarity correct and there are no shorts on the supply.

Install protective devices

Depending on the design of the CU it may be easier to install all the protective devices at the start, or it may be easier to do them one at a time as you reconnect each circuit. The latter approach is least open to error. 

Re-connect circuit wires

Connect each circuit in turn following your labelling. If you have new circuits to introduce that were not connected to the old CU it can be worth leaving those until you have restored the original functionality and tested it. 

Labelling

The MCBs or fuses should be labelled to show what circuits they supply. Installations using both wiring colour codes are required to have a notice fixed by the CU stating that both colour codes are in use. It is a good idea to label as you go to save confusion later. 

Testing CU main wiring

Once all the circuits are connected, another visual inspection can be done, and you can go over all the screw connections again to ensure they are tight. Check busbar connections to the main switch / RCD as well. A final sanity check with a multimeter will also catch any silly mistakes. 
You can carry out a full installation insulation resistance check at this point also (taking care to protect any sensitive electronic equipment wired to the circuits first!)

Reconnecting power

With all the CUs turned off the power to the CU can now be restored (fuse replaced etc). All the individual ways should be turned off on the CU before turning on its main switch. 
At this stage you can carry out full RCD tests using an appropriate tester. 
Each of the individual circuits can then be turned back on one at a time, and functional checks be carried out.

Resolving Problems

If all goes well you should now have a working electrical system again. However in a minority of cases you could meet problems. These may be ones that you have introduced during the CU change, or often, they are ones that were always there but did not make their presence felt until now. 

Nuisance RCD trips

It is not uncommon for a new CU to trip the RCD as soon as power is turned on. There are a number of common causes of this, which are addressed in the RCD article.

MCB trips

MCBs trip when too much current flows in the circuit they supply. Since the odds of an appliance fault developing while you replace a CU are small, the likely causes of MCB tripping when a CU is replaced are:
  • a circuit miswired during the works (eg when fixing another fault)
  • wrong rating of MCB fitted

Sunday 21 September 2014

TESLA WIRELESS POWER

£30K ELECTRIC CAR EXPECTED TO APPEAL TO THE MASSES

04SEP 2014
Tesla Motors, the company responsible for producing the all-electric Model S, a car that Consumer Reports rated the “Best Car Ever Tested” in 2013, is expected to today announce plans to build a new $5 billion dollar plant in Nevada which will produce electric car batteries for their upcoming 2017 model.
Being dubbed the “Gen III,” the new Tesla all-electric car is expected to have a range of 200 miles per charge and retail for approximately $35,000 dollars – A price point which is expected to appeal to the masses. The Tesla “Gigafactory” is projected to produce 500,000 battery packs for electric cars each year by 2020. Sources familiar with the project have indicated that the Nevada location was selected due to its proximity to America’s only active lithium mine.
Designed to reduce battery costs by 30 percent, the Gigafactory is Tesla’s company advantage in producing a more affordable, mass-market electric car. For industry watchers, however, the move also translates to a lot more demand for lithium.
In a note sent to shareholders in late March, Lithium Exploration Group CEO Alex Walsh said Tesla is expected to consume up to 15,000 additional tons of lithium carbonate once its Gigafactory operations are in full swing in 2017. To put the amount in perspective, total global demand for lithium carbonate in 2012 was around 160,000 tons, according to international metals and minerals research and consulting firm Roskill.

A MATTER OF TIME

“It’s just a matter of time before electric vehicles take over the market,” said Dennis Bryan, senior vice president of Western Lithium. “Given the continued growth factor in lithium, we expect demand to increase substantially.”
Sales and adoption of electric vehicles (EVs) like the Tesla Model S, Tesla Roadster, and Nissan Leaf have been steadily increasing over the past few years thanks to the financial savings associated with “fueling” a car with electricity. The cost to “fill up” is under $5 dollars, as opposed to $40 dollars or more to refill an automobile with gasoline. Financial savings can be even greater when you install a home solar energy system to collect sunlight and recharge an EV with solar power.
Previous reports have shown Tesla’s new Gigafactory will be powered by on-site renewables including solar and wind power: solar panels
tesla-motors-solar-powered-gigafactory

SOLAR POWERED TESLA GIGAFACTORY AT A GLANCE:

  • Expected to drive down the per kWh cost of EV battery packs by more than 30 percent
  • Forecasted to produce approximately 500,000 EVs per year by 2020
  • Will take up approximately 500-1,000 acres
  • Will employ approximately 6,500 workers
  • Model 3/Model III will be 20% smaller than Model S,
  • Expected to have electric range of 200 miles at approximate cost of $35k
  • Design expected to be unveiled in 2016, car available for purchase in 2017

TESLA SOLAR POWERED SUPERCHARGING

Tesla Motors is simultaneously building a national network of solar powered electric vehicle fast charging stations.
tesla-ev-supercharging-stations-solar-powered-cars
Tesla’s EV ‘Supercharger’ technology provides a half charge (approximately 150 miles of driving range) in as little as 20 minutes, all compliments of a beautiful solar panel canopy which adorns the top of the EV charging station.

Saturday 6 September 2014

EMERGENCY ELECTRICIAN SOUTHSIDE GLASGOW

If you live in Clarkston Glasgow or Giffnock in the south side of Glasgow

In Scotland It’s technically known as a consumer unit but it’s more commonly referred to as a fuse board , main box or even a fuse box. They are the heart of a home’s wiring system; fuse boxes work to distribute electricity to circuits in the house.
Prior to the arrival of mini circuit breakers (MCBs), the older type of consumer unit feature a horizontal row of fuses. New consumer units are more pleasing on the eye, and they have “toggles” so when they trip they just need flipping back up. Needless to say they are much safer.
Pre-1950 fuse boxes still exist but their numbers are low, and because it’s common for them to have exposed live parts these units should always be regarded with caution.

Different types of consumer units and fusebox

There’s a wide range of consumer units available in the UK, from leading and well respected manufactures such as Volex, Legrand, Wylex, MK and Crabtree. Determining which type of unit that best suits your needs will depend on how many separate circuits you have in the home.
The basic types of domestic consumer units are:
  • Main Switch Consumer Units
  • Split Load Consumer Units
  • Dual Residual Current Device (RCD)/ 17th Edition consumer unit
  • High Integrity Boards
For security and aesthetics, consumer units tend to be located in out of the way places, for example in closets (but not clothing closets), basements and garages. However, they still need to be easily accessible.

New consumer unit regulations

New 17th edition wiring regulations were introduced for the UK in 2008, which required all circuits to have RCD protection. Since the new electrical wiring regulations were introduced, all new homes built in the UK have to be fitted with RCDs. These life saving devices are designed to protect against electrical fires and electric shocks, which can be fatal.
Although it is possible to make existing electrical installations in the home compliant, in most instances it’s easier, safer and ultimately more cost-effective just to remove the old fuse board and replace it with a modern consumer unit.

Switching to a new consumer unit

Consumer units must be installed by a certified Part P electrical contractor. Replacing an old fuse box in a typical three bedroom property should normally be completed in a day. day.
The electrical installation will need to be inspected and tested to ensure it is safe before the fuse box can be replaced with a new consumer unit. All cables will be upgraded and all circuits fully tested. An electrical installation certificate will only be issued after the job has been done and all tests are satisfactory.

Ensuring Safe Homes: The Imperative of Electrical Testing, Qualified Electricians, and EICRs for Landlords in Glasgow

https://g.co/kgs/Fsif6i Introduction Renting out a property comes with significant responsibilities, particularly when it comes to the safet...